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Spherical squeeze-film hybrid bearings were analyzed theoretically. Based on

ABSTRACT

an asymptotic approximation for large squeeze number, the solution of the
Reynolds' equation applicable to the system under investigation was obtained.
Perturbation method has been used; the results are valid for small radial dis-
placement only. It has no limitation however in the values of compressibility
number, axial displacement ratio and excursion ratio. Numerical calculations
have been programmed on the GE205 computer. Axial load-capacity, axial stiff-

ness and radial stiffness and attitude angle were obtained.



I. INTRODUCTION

In a gaseous squeeze-film bearing, one of the bearing surfaces is made to oscillate
transversely. By virtue of this high frequency transverse oscillation of the bearing
surface and the non-linear nature of the gaseous flow in the film, the time-averaged-
film pressure becomes greater than the ambient and, consequently, a load-carrying
capacity is generated. To obtain a relatively large load capacity, it is desirable
to have a high frequency and a relatively large transverse oscillation. This can

be achieved by letting the osciallating bearing surface be part of a resonant trans-
ducer system. In the literature, theoretical and experimental investigations on
gaseous squeeze-film bearing have been made. References 1 and 2 concerned journal
and thrust bearings and Reference 5 provides the foundation for the analysis of

squeeze-film bearings of arbitrary bearing shape and arbitrary mode of gap oscillations.

The purpose of the present investigation is to analyze spherical squeeze-film

hybrid bearings with small radial displacement. Based on an asymptotic approximation
for large squeeze number, the solution of the Reynolds' equation with an assumed
mode of gap oscillation was obtained. The perturbation method has been used; the
results are valid for small radial displacement only. The results obtained (axial
load capacity, axial stiffness and radial and tangential stiffnesses) provide

pertinent information in designing spherical squeeze-film bearings.



2. ANALYSIS

‘Thé'squeeze—film bearing presently under consideration consists of two spherical
surfaces, the geometry of which is shown in Figure 1. Spherical coordinates
have been used - 6 and ¢ are respectively the meridianal and azimuthal angles.

The bearing extends in the ¢@-direction from P, to O,.

2.1. Basic Equations

The isothermal Reynolds'equation of a spherical squeeze-film bearing with meri-

dianal journal angular speed W and squeeze frequency @, is (Refefence 3)
r ° i P
sing %5- ; sino H3P oP + 5% H3P %5

v &

r

2 Ty , ,
= sin @ j\_§+cg;(PH),....................(2-.1)

where /R 2
_ laug PRV
o = —FEQ T = Squeeze number

2
buw R clits oy
_j\_ = = c = Compressibility number . . . . . . . . . . . . . . . (2.2)

a
T = ot = Dimensionless time .

In this report it is assumed that the squeeze motion is entirely in the axial
direction. Setting € = excursion ratio, Ny Np = axial and radial displacement

ratio respectively, the normalized film gap can be expressed as (Ref. 3)

H(@, 9, ) =14+ (e COST‘+'nz) cosp + u sin ¢ cos(6-q) . T ) )
The boundary conditions of equation (2.1) are

P (¢1, 6, ) =P (@2, 0, T =1 . .. . et e e e s e s e e e e . (2.4)

P (p, 6, T)

PP, 0+ 210, T) v b v v v it it e e e e e e e e (225)

= - %l (2.6’
ae (p?.”r 9 CPP-FZ‘K,T e s e s . . .

plus the condition of periodicity in time,

P (P, 8, T) =P (P, 0, TF2T) © v v v v v o v e e e e e e e e e (20D




2.2 Asymptotic Approximation

-4 _ 2
The squeeze number ¢ is generally very large. For P, = 14.7 psia, % = 1.7x10 "ft" /sec,

o = 0,074 1b/ft3, Q = 40,000 x rad / sec, % = 1000, we have a typical value of o -
. 2
o =.]'_2.LQ B, = 275.
P, ¢l

Hence, the asymptotic solution (o= ») of equation (2.1) is of interest. A general
treatment of squeeze-film bearings using the asymptotic method is given in Ref. 5.
The analysis to be developed is a special application of this method to spherical

bearings. Rewrite equation (2.1)

S% (PH) = ——l—z— sing Q [éinm H3P gg] + gg [H3P oF | A_sinzw (PH{] . .(2.8)

osin @ P o8

As 0 » x, %: (PH) =0 . & v v v vt e v e e e s e e e e s e e s e e e e e e e (209
Denoting ¥ = PH . . « « v v « v v vt it e e e e e e e e e e e e e e e e (2010)
we have
as g ¥ o, ¥ =y (@, B) « « v v v e e e e e e e e e e e e e e e e e e e e(201)
except in the boundary layers near ¢ = OF and ¢ = ?y- The extent of the boundary
layers is of the order of 0-1/2. Let We be an edge correction in the boundary layer,
then

Vo= (@, 6, 7) + ¥ _ (9, B) v o e e e e e e e e e e e e e e e e e e e (2012)

During the process of reduction from equation (2.8) to equation (2.9), the differential

equation loses two orders in ¢@-differentiation; consequently the asymptotic solution ww

will not satisfy the two boundary conditions (2.4). The boundary conditions to be

satisfied by y_ at 9, and P, can only be determined by a mass content rule which will

be discussed later.

Using the identity
H3PdP=1/2d(H\[;2)‘3/2\lf2dH.................... (2.13)

and integrating (2.8) with respect to 7 from O to 2x, we obtain

2
c 9 ) 2 2 . oH
sinp = sing (Hy ) - 3¢y sing d r
]0 oQ [ oP oP ]

2
Z 23 [gg ) - 3y g% -2Asin2cpw]d'r=0............(2.14)

Using the asymptotic approximation (2.11) and neglecting the edge correction we’



equation (2.14) is readily reduced to:

sin o {sin o (H° wmz) - 3wm sin @ oH ]

o
oP 3P 35—
d 3 2 2 3% 2 ]
+ 335 6 v, D -3 5T -2 AsinTey | =0. .. (2.15)
where H = 1+'qz cosp + 1M sing cos (@-a) . . . . . . ... ... (2.16)

which is the time average of H given by Eq. (2.3).

The 9 - wise boundary conditions require that both ww and its derivative be periodic

in 0,
v (p, B8) = v (@, 6+ 2) . . o« oo s s e e e e e e e e e e .(2'17)
W, -,
3 0.6 36 0. 64 20 Tt ) gy

The ¢-wise boundary conditions, however, are not known explicitly. Eq. (2.4) is not
use ful because at ? and ®y the edge correction (we) is important, but unknown.
In the following section a mass content rule will be derived which may be used as

boundary conditions for v at ? and P,

2.3 Mass Content Rule

In deriving the Mass Content Rule, the method used here is quite similar to those
in Reference 4 which deals with the axially symmetric problem. We shall proceed
by integrating Eq. (2.14) with respect to ¢,

2 ®
Z dr sing {% (H q;z) - 3\1;2 %g} + ‘Si—i-%, 7« %5[%3 (H\uz)-awz %;-]
2 °
Integrating once again, we obtain
2 ) ¥ g o
Z H dr =4 (6) ;—i%cp,+B(e)+1(q>,e).......;..(2.19)
%1
where A (8) and B (8) are '"constants' of integration,
0 2 2
and I (9,8) =3 ][ do' j7 dr - [W (o', 6, 7) ] BH(®;$.9’ 9.

P " ! 21
- QL do' a L 1 2 1
./r sin ¢ Z E%;_¢' J/— dr 36 \o® [H (@', 6, ) v" (@', 6, T)}
1

[¢}



On the boundary, @ = 9 (i =1,2), and P (@i,e, T) = 1.
Thus, ¥ (9,,8,7) =H (9,,0,7) .« .. ... (222D
and Equation (2.19) becomes

2x 3

.J B (p,, 8, T) 4t = A (9) 'J 1n@' +B(O) + T(P,8) « - . - ... .. (222)

o Py (i = 1,2)
On the left hand side of Eq. (2.19) replace y by y
2 25t P
' @ﬁ)J HdT=Aw)J ;%; + B(O) + I(9,®) . . . . . . . .. . (2.23)

Let the boundary layer thickness at 9, be Sml, then Eq.(2.23) can be evaluated at
CP=CP]_'+6CP"
1

21 ®1+6(P1
2 do' .
\vw (q>1+6cp1,9) J' H (cp1+ Scpl,e T)dT—A(Q)J sing’ + B(9)
° P
+ I (p;+ 89,8) . . . . (2.24)

Since 8@1 is of the order of (¢ %), the right-hand sides of (2.22) with i =1, and
%y,
Hence a comparison of (2.22) and (2.24) leads to

21 3 2 T
/ H (@1,9,7) dr = ww (@1+5@1,9) j- H (¢1+5¢1, e,T)dr . . . . . . . . . (2.25)
o

(2.24) are equal (neglecting O(c

Again, because 8Py is small it is reasonable to assume

Wm(@1+6$1,9) = Wm(@l,e). Hence

25
3
2 o (q)]_’ 9) T) dT
(¢y,0) = 5= (9,00 (2.26)
2r
Similarily (
i 3
2 _ 50 H (@2,9,T) dr
v, (9,,8) = 2 A (5,0 (2.27)



The mass content rules (2.26) and (2.27) provide boundary conditions for ¥ at
00

¢1 and @2.

2.4. Perturbation Solution - small ym

The asymptotic solution Wm governed. by Equation €2.15)iwill be solved in this
section. The pertinent boundary conditions are (2.17), (2.18), (2.26.) and (2.27.) For
small radial displacement ratio (nr) the problem can be solved by perturbation
method. It is convenient to expand
2 ie
Hoym = go(m) + n, Re gl(@) e Y ¢ 13

where 8 = 0 - o X Y ¢2°))

Note that gl(@) may be complex. The zeroth-order solution go(¢) is a function of ¢
2 ,
only, since for zero radial displacement Howm should be independent of 8.

Rewrite (2.16) in the form

ie
Ho (¢19) = ho (p) + n, Re h1 (@) e Y < 10))
where ho (@) = 1+T]z cosQ o <3 )|
h1 (p) = sing e ¢ ¥

Substituting Eqs. (2.28) and (2.30) into eq. (2.15) we obtain

o d dgo & dho
n, ¢ sing o s1n@.55— -3 H; Ea— = 0 B %))
dg g. dh h
L ine & ) sinol —L — 3 2L _—o _ 4 (1
N, * sing a0 smqa[dcp 3 ho o 3 g‘O a0 ho J
g g g h
- 2o -y inZa/=e 2L _ _1}_
8, + 3 h h1 i A sin"@ ho 5, _hb )— O . . .. (2.34)

The boundary conditions (2.26) and (2.27) can be integrated to give
2

1 3
SO H (cpise’T) dar
2% Ho (@i T)

v (91,0) = (i=1,2)

2 3 2 2
H (@1,9) + 35 ¢ cos S (2.35)



Multiply both sides by Ho (@i, 0)

ie _ .3 2 i

go (wi) + nr g1 (Qi) € N ho (Qi) + My 3 ho (wi) h1 (Qi) e

32 2 i6

+3 e cos? o [ho @) + 1, by @) e, (2.36)

which results in the following boundary conditions
3 3 2 2 .

g, (@i) = ho (@i) + > € ho (@i) cos” @, (i =12 .. ... . ... (2.3
g, @) =3h 7’ (0) hy (©) +3e’h (9) cos” 0, (i=12) (2.38)
1 P4 o 937 0y ;0T 3 1 9 i 28) e e e S

Thus, the solution of Howwz is represented by go(w) and gl(@) as indicated in (2.28).
The zeroth-order solution go(w) representing the zero radial displacement problem
can be obtained from Eq. (2.33) and boundary conditions (2.37). Having obtained go(m)
from the above system, the first-order perturbation solution gl(@) can readily be

solved from differential Equation (2.34) and boundary conditions (2.38).



3. AXTALLY SYMMETRIC CASE

Spherical squeeze-film bearing with axial displacement only is considered in this

section. The normalized film gap is given by Eq. (2.3). Thus, with Ny = 0, we have

H (9,0) = ho(w) + ¢ cosp cosT e e e e e e e e e e e e e e e e e (3.

where ho(@) =14+ n, cos®: e e e e e e e e e e e e e e e e e e (2.

and H0 (p,0) reduces to ho(m) as can be seen by Eq. (2.30).
Denoting the solution of y 2 by G0 for the axially symmetric problem, it is clear

00

from Eq. (2.28) that

go(@) = ho(m) Go(@) D ¢
and G0 satisfies

d d dho

sing 55 [31n¢(35 (ho GO) -3 GO Ea— J= 0, S <

with boundary conditions
2 3 2 2
= = i = e e e e e e e e e e e e 3.

G, (@) =h_ (@i) + 5 e cos” g, (i =1,2) (
Equations (3.3) and (3.4) can be readily deduced from (2.33), (2.37) and (3.2).
Eq. (3.3) can be integrated directly to yield

| d dh_

sing do (hoGo) -3 Go 55— = A . s e e e e e e e e e e e e e e e e e e (3,
The solution to Eq. (3.5) can be obtained directly by assuming GO = ho2 F(p) and
substituting this expression into Eq. (3.5). Thus,

p3dE _ A (3.

o do sing

Integrating Eq. (3.6) one obtains

d
F(p) = A J/é;;%—ﬂ-g- + F(¢1) P ¢
o

%
where F(@l) = (bo/hoz)l.

With Eq. (3.7) and the assumption made above that Go = ho2 F(p), one can write the

solution for GO and thus 2.

1)

31)

2)

3

4)

5)

6)

7)



2

h_(®)
G=\lr.'2=Ah2 —do 4 \l'z(cp)..........(s.a)
o o o . h (p) o 1
sinp h o "1
1 0
By evaluating § (9) at ¢, one obtains an expression for "A", thus,
* 2
h (9,)
2 2 2
¥ “(0,) {f(—-)}wm (@)
A= 7 ! (3.9)
2
2 d
h 2 (9,) & —de
o, sing h0

The solution to the problem of the axially symmetric case is now complete. It is

given by Eqs. (3.8), (3.9) and (3.4).

The pressure distribution for the asymptotic problem (large ¢) is'obtained from

P-pa=pa(P—l)=pa]Lul_flﬁ-1} O € P 1)

The mean axial load is

?, Zn
Fz 1 o
= o & a0 %(_H ~ 1) sin Z¢p dT,
np_R
a P P °
v 20 1

gl W/ihoz - €2cos'@

The mean axial stiffness is

z_ __ 9 z
ﬁPaRz aqz ﬂPaRz
?, 25
S ae o_ (‘j-fﬁ sin2¢ dr - : .. (3.12)
(| e
1 2

Above expressions can be further reduced analytically for specific geometries.

Some of these are given in Appendix I.
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4. NON-AXIALLY SYMMETRIC CASE

Having solved the axially symmetric problem and knowing its solution 8o (p) from
Section 3, we are in a position to solve the non-axially symmetric problem, i.e.
there is a small radial eccentricity. By perturbation method, the governing
differential equation of gl(m) and boundary conditions have been obtained in
Section 2.4.; they are respectively Eqs. (2.34) and (2.38). Since gl(@) may be

complex, we assume

gl(w) =u@) + 1 V(Q) .. o e e e e e e e e e e e e e e e e e e e e 4.1)

Using Eq. (4.1) and separating the real and imaginary parts of Equatioms (2.34)
and (2.38), we obtain

o 8 o du) g (S ey 2P v
sing o sing do ing o ho 3 [0 ho -

(o]
od [ d [1)] _ 4B
= 3smcpdcp [smcpgodcp (ho)} 3ho h1 S )
dh
— A si 2@/52 Yy osing <2 ling &) = 3 ging & [¥sine __o}
A sin h B, + sing do sin® d@l 3 sing o h_ 3 v

h
.2 (B ™1
= A sin”o ’h I NN (4.3)
o o

with boundary conditions
2 1 2 2
u(es) =3 hy (o) [ho (@) + 5 ¢ cos @i]
- (i =1,2)

1]

v(p;) =0 (4.4)

Equations (4.2) and (4.3) are two simultaneous second order ordinary differential
equations, and Equation (4.4) provides four boundary conditions which are required
to solve the above Equations. The solutions (u and v ) of Eqs. (4.2) and (4.3)
based on numerical integration using "influence coefficient' method is shown in

Appendix II.

Knowing u and vy, the pressure distribution for large ¢ may be obtained from

Eqs. (2.10) and (2.28).

’ 2
D HO Ilrr::o

fdﬁ:=ﬁ§= e (7))
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or,

VG,

P = ho+e cosQ cosT
4o 1 [u cos® -y sin@ _\/Go h, cos® _ G, by cos8 (4.6)
Sy ho+e cos®p cOsT 2 hoj/Go 2 hO I (hd+€ cosp COST)Z

It is interesting to note that although the product of PH, ¥, is time-independent
for large o, the pressure P however, is a function of time through the relationship
P = w”/H. The pressure as expressed by Eq. (4.6) consists of an axially symmetric

term plus a perturbation term due to radial displacement.

To obtain bearing forces we first take the time average of P, then integrate through-
out the bearing film. Denoting the axial, radial and tangential forces by FZ’

FR and FT, respectively,

Axial Force
27 25

12
dr . 2
F= o - i L N N 2 ) °
7 J[ dw/[ P ./- (p pa) cosp sinp R"d8 . . . . . t.7)
¢1 o] o
and . @2 2r 250
AN do dr (P—1) sin20d8 . . . . . . . . . (4.8)
R2 4 2 ¢
4 T % A A
Radial Force
¢
F, = 8 (p-p.) sing (-cos®) R sinpd® RdQ @ ... (4.9)
R a 25
9y 6=0 “T=0

Since the radial displacement problem is linearized, the radial force per unit

deflection is the radial stiffness. Normalizing, the radial stiffness is

2 Py 25

Ck F j’ _ [
Iz{ R . =~ ; cos6 d © j sinp dp J (P = 1) dr. .(4.10)

s
R pa nR paT]R 2x 'q,r o} q)l o
Tangential Force
(92 2% 25

. . = . ar \
FT = -// J[ J/— (p-pa) sing (sin@) R sinp d 6 Rdo o C ot (4.11)

ol =0 “r=0



Defining the tangential force per unit radial displacement as the tangential

stiffness and normalizing as above, we have

-12-

2ﬂ ®2 25
Ck F _
L .-t .- [sinOdQ[ sinp do /(P-—l) dr . . (4.12)
R P, nR P, 2x Ny © ? 0

Performing the © - integration in Eq. (4.8) and using Eq. (4.6) we have

F, / / 1Y sin2p AT . e e e e . . (4.13)
-

TR h +e cos@ cosT

Since the perturbation term drops out in @ - integration due to symmetry, the axial
force is indifferent of small radial eccentricity. Integrating Eq. (4.13) with

respect to T

F Py /G, sin 2p do

1 ) _ .
2@+5|:COSZCP2 cosZcp]:l......... (4-14)

We have used'Eq. (309) of Reference [6]
27

dr - 21
fa+bc057‘ﬂ'%=2 RN (S 1.3
° a —b

As may be anticipated Eq. (4.14) is identical to Eq. (3.11).

Equation (3.7) of Reference [6] is also useful.

21 “dox

dr a dr _ 2rta
-/(+b )2 Z_bz,/a+bcosv"'2 3 e (18
/ (atb cosT a / @2 - v

The dimensionless radial and tangential forces of (4.10) and (4.12) can be similarily

reduced to

@
CkR ~ Sinz J,u -G h1 G ho h1 a0 .17y
N 2 2 7 ‘ °
3\:R_2 rn-\\/h — ¢ cos rnl 21/G h h 2— az 3052 o



- Dy
CkT Jf sinzw v P
e N
s TR P, Py ’ho —¢ cos @ 2 ho Go

With the solutions u and v obtained by the method described in Appendix II, we
may calculate (4.17) and (4.18) numerically.

-13-

(4.18)
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5. INFLUENCE OF STRUCTURAL FLEXURE

Analyses of previous sections considered a spherical squeeze-film bearing with
squeeze motion uniformly in the axial direction; the bearing was assumed to be
rigid.

Due to structural flexibility the bearing tends to vibrate at frequency synchronous
with the excursion frequency. An axially symmetrical mode of vibrations is assumed.

Thus, the normalized film gap may be expressed by
n
H (p, 6, T) = HO (p, 8) + ¢ cosp cost + b(p) cosT e e e e e e e e e (5.1)

The last term of Eq. (5.1) represents the contribution due to axially symmetrical

synchronous structural vibrations. b(p) is related to the mode shape of vibrations.

The asymptotic analysis and the Mass Content Rule derived in Section 2 are still
~N
applicable here if H is replaced by H. Denote each quantity q which needs to be

modified due to structural vibrations, by a. Thus

~ ~N

U= PH v e e e e e e e e e e e e e s s L 5D

The differential equation for % which is the asymptotic approximation of | for large
[2 0]

o, 1is

Q/
2 Slo
~

sing g% {sin Ho ﬁwz) - 3’;m2 sing Qg—J
v

i
) [ 2 (n w 2y -4 7 2%

T30 w 58 A sin % } = 0. ... ... (5.3

Eq. (5.3) is of the same form of Eq. (2.15) .

Using the mass content rule of Section 2.3., we have
27

~3
i (p,, 6,7 ) dT
2 l( Pi

(p;» ©) = 2 H_ (5, ©) (1 =1,2) ¢ v v v v o v v v v (5.4)

¥

o0

Substituting Eq. (5.1) into Eq. (5.4) results in

2
2 2 3 .
(@i, Q) = Ho (@i, o) + 3 € cos @ + b (@1)1 (i=12). .. .. (5.5)

L J
Equation (5.5) serves as two boundary conditions in the ¢ direction. Therefore, it
is seen that in the analyses the only modification required due to structure vibration

is in the ¢p-wise boundary conditions.
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For small radial displacement apply perturbation method and expand

nvl=% ) + R N()ig (5.6)
oV, =8, () nARe 8 (@) e C e e e e e e e e e e e e e e .

Substitution of Eq. (5.6.) into Eq. (5.3.) results in the same equations as (2.33)
and (2.34) upon replacing go(Q) and g1(¢) by Eo(¢) and El(@) respectively. From
Eq. (5.5) the boundary conditions are readily deduced,

2
Eb(®i) h03(¢i) + %‘ho(wi)[e cosp, + b(@i)} 1=1,2) ... .... (5.7)
. ) 9

3hc2>(‘Pi) hl(cpi) + % hl(cpi) [e cosp, + b(cpi) (i1=1,2).... (5.8)

8, (0,)

It can be shown, following exactly the same procedures as developed in Section 3,

that the solution to the axially symmetrical problem is given by

®
. do! ~ 2
G_ =rq\,lm2=Xh02(cp) — FBRZ@ . (5.9)
vl sing' ho (")
[ € cosm2+b(@2)f [e cos@1+b(®1%r
N4 h (@) ) h (9;)
where A=% ?
J[z do e e e e e e e e e (5.10)
sinp {h (p))°
" [°2 ]
~ 3 |€ cos @1+b(@1)
B=1+ > B o)
o CP1

For the problem of small radial displacement, assume

BL@) =@ FIUG) . . L (51D

The governing equations for 5(@) and 3(@) are Eqs. (4.2) and (4.3) replacing u and v by
U and GlrespeCtnglyﬂhe boundary conditions are however

2
2 1 .
3 hl(wi) ho (wi) + z[é cos @, + b(@i) (i =1,2) e e e e (5.12)

(o, )

v(py) =0
The results of the numerical analysis in Appendix II are also applicable if

appropriate boundary conditions (Eq. (5012» are used.



The following special cases of mode shape of gap oscillations are of interest:

1.)

2.)

b(p) = O

Structural flexibility is negligible. Gap oscillation is solely caused
by axial excursion of the bearing as a rigid body. This is the case

studied in Sections 2, 3 and 4.

€ = 0, b(p) = constant.
This represents a mode of uniform normal oscillations of the bearing

sur face.

Various combinations of ¢ and b = constant can approximate quite well the actual

squeeze motion of the bearing surface, including the influence of structural

flexibility. The analysis in this section, however, is valid for any mode shape of

the squeeze motion of the bearing surface.

-16-



-17-

6. RESULTS

The axial load and stiffness of a concentric (nz = 0) hemi-spherical squeeze-film

(¢1 = 09,@2 = 900) have been calculated and are graphically shown in Fig. 2. These
curves can be used as a preliminary guide for estimating the load requirements of

a spherical squeeze-film thrust bearing. The need for sufficient amplitude of the

squeeze motion is clearly indicated. For ¢ < 0.4, every increment of 0.1 in ¢

at least doubles the load capacity. Gain in the stiffness with increased € is even

larger.

In Figs. 3 through 5 are the axial load capacity and stiffness for a bearing
geometry being tested at the Astrionics Laboratory (@1 = 0, P, = 670). The normal
way in presenting these results is done in Fig. 3. Because the unit load in the
actual test is typically very small, the magnitude of the axial displacement is
considerably larger than the nominal bearing clearance. Under this condition, the
mean gap at the pole of the bearing, ¢ (1 + n), is more representative of the fluid
film thickness than the nominal gap, C. For this reason, the normalized variables
are rescaled and the results are shown in Fig. 4 and 5. Both the load capacity

and the stiffness, in terms of rescaled normalized variables, increase with 7;

this is because the bearing gap becomes smaller toward P, for larger n. However,

as n,becomes larger and larger, the curves appear to approach some asymptotés as may

be expected.

Calculations of both axial and radial displacement effects have been made for the
geometry corresponding to P = 41.50, ?, = 68°. This geometry is of interest because
it circumscribes the ''iso-elastic cone'. (The "iso-elastic' cone has an apex angle
equal to 2 tan-1 (lfﬁf). If the local normal spring rate over such a cone is uniform,
its over-all axial and radial stiffnesses are equal). Axial forces, axial stiffness,
and radial stiffness are respectively shown in Figs. 6, 7 and 8.for the non-rotating
squeeze-film bearing.(There is no tangential stiffness in this case). Comparing with
Fig. 2, it is seen that the axial load is about 15% lower than that of the hemi-
spherical bearing, while the axial stiffness is about 50% lower. Comparing Figs. 7
and 8, it is seen that the radial stiffness is somewhat smaller than the axial stiff-
ness. Thus, to achieve iso-elasticity, ¢2 would have to be large

journal rotation are illustrated in Figs. 9 through 12. In Figs. 9 and 10, radial
and tangential stiffnesses for € = 0.5 are shown. It is seen that the rotational

effects can be neglected for A < 2, whereas substantial increase in the radial stiff-
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ness over the squeeze-film bearing (without rotation)for A > 50, is caused by rotation.
In Figs. 11 and 12, radial and tangential stiffnesses of the concentric squeeze-
film hybrid bearing are plotted against the excursion ratio (for the axial squeeze-
motion) for various values of A (rotational or self-acting effect). It is seen

that for each A, the radial stiffness increases with ¢ and approaches essentially

to that of the non-rotating squeeze-film bearing when ¢ is suffdiciently large.

For instance, at A = 10, the radial stiffness is very close to that of the non-
rotating squeeze-film bearing for ¢ > 0.4; whereas at A = 100, the corresponding
transition appears to be beyond € = 1.0. The radial stiffness of the hybrid squeeze-
film bearing is approximately equal to the sum of those due to squeeze-film and
rotational effects separately. The curves for the tangential stiffness show that

the contribution of the squeeze-film motion is essentially negligible.



-19-

7. CONCLUSIONS

According to the analysis and the sample results considered in the previous sections,

the following conclusions can be drawn:

a. The asymptotic analysis of squeeze-film bearings is applicable when ¢ is
sufficiently large. According to the asymptotic analysis, Y= PH is time independent.
The error involved in the asymptotic analysis concerning the bearing load capacity

is of the order of 1/ VET

b. Up to the first order of the radial displacement, the axial load capacity
and the axial stiffness are independent of the radial displacement and the journal

rotation.

c. When the mean gap is much larger than the nominal gap due to a large axial
displacement, (for a bearing consisting of primarily the polar region), the nominal
gap dimension has little significance. In the case, the mean gap at the pole be-

comes the appropriate reference dimension for the bearing gap.

d. The hybrid squeeze-film bearing has a radial stiffness approximately equal

to the sum of these due to squeeze-film and rotational effects separately.

e. The tangential stiffness of the hybrid squeeze-film bearing is practically

independent of the squeeze-film motion.
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APPENDIX I

SPECIAL SOLUTIONS FOR THE AXIALLY SYMMETRIC PROBLEM

Analytical expressions for the mean axial load and mean axial stiffness are obtained

for four special cases; they are

a) P > 0°
b) P = 0°
c) ¢ = 0? Ny = 0
and d) o = o n, = 0s @, = 90°,
Case a) 9 > 0°
Use Eq. (3.11) for the mean axial load with
9 h (@) 12 , %

18 (p) = {A h0 (9) I(p) + H;?EIT v (wl)} e ¢ P )
I((p)=J(CP)'—J(CPl) e e s e e e e s e e e e e e '(CPZCPEZCP1)° e e e e e 2 (1.2)
J(p) = Bl logel 1 + cosp| + 52 1oge 1 — cosgp |+ 63 1oge 1+ n, coso +

2
54 / (L+nz cosp) + BS / (1 + n, CoSP)™ .t v e e e e e e e e e e (1.3)
and
- A
17 G D3
1
Bz = -——__3 ’
2(ﬂ?+1)
Y A
By == (B, + B, ' %)
. 2 )
Bs = % [3 (l—nz) By +3 (X +n,)B,+ (1-n_7) 53 + 54

Eq. (3.11) can then be integrated numerically. (Simpson's quadrature formula is
used).

The mean axial stiffness is obtained numerically by calculating the mean axial
load, Eq. (3.11) at small increments around the actual axial eccentricity ratio.

Thus,
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2 = 2 A‘r] 2 - 2 N s e & o o & o & e o o 8 © o o (I°5>
np R
a

where superscripts (+), (=) refer to +An and —An respectively. A suitable value
for An is 0.01.

Case b) 9, = 0o°
F ) )
5 = EI1 + % | cos 2 Py ~ 1J, R ¢ Y
np, R -
—V/ 3/2 62 cos2 Py
where E = 1+ 5 (1.7)
(1+ﬂz cos wz)
sin 2¢ (1+n cosp) do
and I, = J’ (1.8)
oy 1+'|'] COSCP)—GCQQ
Ck F -
z ~—aa . =—[I§'B—+EI , (1.9)
R N2 \ap. R 1 2
Py a -
SE 3/2 ezcos3@2
where —— = -— 3 s e e e e e e e e e e e e e e e e e (I.10)
anz (l+nz cospy) E
\cpz
2 sin2p cos®od
and I, = —¢ incp cosP.cP R ¢ S D)
2 2 2 2 13/2
B1+nz cosp ) — ¢~ cos ¢]
0
Case c P = 0, n, = 0
F, 1 y
> ~E0110+5[0082cp—1] T 3
7p_R
a
3 2 ;
where Eo = \/1 5 e cos” g, (1.13)
2
and I, = / /S_”_‘?id%_ - 2 [(1—52c082 cpz)%~(1-€2)‘]§] (L)
° Yi—e“cos P € L
Ckz 3 ]
) ~ 150 Sﬁ_ +E I, T ¢ A 5))
ﬁpaR z
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3
where éEg - -3 62 =% (1.16)
an z Eo n
®, 3
_ 2 sinZQ cos @ dp  _ _2 2 -% 3 . 2.,-%
and 120 = € \ [1_€2 COSZ@]3/2 = 2 -(1 € cos @2) cos™o, (1—™)
~Y
+ —g-[(l - 52 cos2 ¢2)% cosp, ~ (1- 62)%] - ég [7+% sinzyJ 2 (1.17)
€ € 71
where 7, = arc sin (e cosmz) s 7, = arc sin (ej, e et e e e e e e e e e o (I.18)

Case ¢) @ =0, n_=0, 0, =90°
F
= 2 2
22— Sy P—(l—eﬁ -1 T € 5 £
xp. R €
a
Ck r 1. -
2_ = 9 |1~ ez-J % + éE [1 - €2]% - —% {arc sin(e)
P, R L € €

+% sin 2 (arc sin (e)” Y & 9113



APPENDIX 11

NUMERICAL INTEGRATION OF SYSTEM (4.2), (4.3) AND (4.4) USING INFLUENCE
COEFFICIENT METHOD

Denoting u' = %% and v' = %% » Equation (4.2) and (4.3) can be written as a

system of first order differential equations. Using matrix notation, we have:

|

)
i

— ) L } _
11 0 13 A u B
— ]
0 A22 A14 A13 v - 32
d
1 0 - do G u 0
d
—0 1 0 d(PJ hv ] -O B
where -
A = A =—d+( t'+3n_28ii
11 - %22 T 4p ctne 1+n_ cosp
n sin2 2
A13 = 3 [ 2cosQ + z P ] _csc’ @
z 1+nzcosw (1+nz cosm)z
A
A4 T
(1+nzcosm)VGo
- dg
3 2 , 2 2 . ,
Bl = 3 g, (ﬂz+COS®) + sin @ (nz —1){+ —2 sing (l+qzc03@)
sin®(1+nzcosw) do
G
o
(UZ+COS®) 3 sino
3
= — A S1D O
B w/Go R

2 1+qzcos®

The boundary conditions to be satisfied by (II.1) are, from Eq.(4.4)

i 2 2 2 7
u(@l) 3 sincpl {(1 +nz cos¢1) +% ¢ cos @lJ
. 2 2 2
u(@z) =3 sln¢2 [(1 +nz coswz) +% ¢” cos @2]
V(@l) =0 -

V(sz) =0
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(I1.1)

:,(II.Z)

(II.3)




Let Eq.(II.1) be abbreviated in the form

W =8

>

and its solution can be written as

w = w w w . - + W
W wp + cqvy + ¥y + u (@1) Wy vV (@l) v,
where ¢

of (1I.4), satisfying homogeneous initial conditions,

[~ ]

o © O O

— -

whereas Wi ;2 and ;3 are to be solved from the homogeneous equation

Aw =20
with respective initial conditions,

(— -

El(cpl) =

o © o +
<
N
—
S
—
4
I
© © + O
o = O O

|9

The last term of Equation (II1.5) can be disregarded since v(@l) = 0, It is not

(11

(I1

(1IT.

(II.

(1II1.
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&)

.5)

1 and c, are undetermined constants. In Eq.(II.S).;é is the particular solution

6)

7)

8)

difficult to show that the elements of Wy and w, are related in the following manner:

=
| R |

L12 = V].

| . [}

Vo T

U =T
v = Uu

2 1 ]

Hence, it is only necessary to solve for either W, or w,.

The solutions — w_, w,, and w,,
p 1 3
rical integration. A standard subroutine is available in the compuler library.

and c

Knowing these solutions, the constants °q 2

conditions

(1.

—can be obtained by the Runge-Kutta method of nume-

can be determined from the boundary
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a(@,) = u (9)) + cjuy(9,) + ¢, [—vl(q)z):l + u(9)) u,(e,)
....... (11.10)

V(@) = v (0)) + e1vi (@) + ¢y [0,(0))] + u(@)) vy(9,)

Solving for < and c, we find

uy(®y) [Vp(wz) +ulop) v30,)] + v, (9 [a(@y) = 1, (9,)-u(®y) “3(¢2)i} II.

(o]
(o]
]
=
_f"/\\’_/\_‘

"11)
1 /.
e =3 {7 U1y [v,0) + u@) vy (9] = vi00,) [uey) = u (@)
T u (o) u3(mzﬂ} |
where D = ul(mz) vz(@z) - V1(¢2) u2($2)
................. (II.12)
_ T 2 r 2
Thus the solutions, u and v, are readily obtained from Eq. (1I.5).
u = up + 1 uy + 02 (‘Vl) + U(@l) U3
................. (I1.13)

<
4

oo vy H e, () +ue) v



~~
S

(o]
o
H

o]

(o]
=
r—l

o

w Yoo X H IO omo@Dm T 0 g H
~
~

t X
)

Q €| ¢

m

3

=

€ v O ®
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NOMENCLATURE

Integration constant.
Coefficient matrix as defined in Eq. (II 4)
A function of ®,representing gap oscillation in Ey. (5.1).
Bearing radial clearance.
Arbitrary constants in Eq. (II.5).
Excursion amplitude.
Radial and axial displacement; e, is positive when journal is
moving away from bearing.
Bearing force in the direction of ().
Defined in (2.28).
Defined in (3.2).
Defined in (2.31) and (2.32).
Normalized film thickness.
Temporal average of H.
Normalized film thickness with structure vibrations taken into account.
Defined in (2.20).
Stiffness in the direction of ().
Pressure
Normalized pressure, p/pa.
Radius.
Real part.
Time.
Real and imaginary parts of g.
u', v', u, v as defined in Eq. (IIL.4)
Attitude angle.
e/C, dimensionless excursion ratio.
ig » dimensionless radial displacement ratio.

C
e

EE , dimensionless axial displacement ratio.
Meridian angle.

0 - X

Density.

Azimuthal angle.



A -9%9- % ‘ = Compressibility number
a

v Viscosity )

o} lgEE—Q' (% = Squeeze number.
a

7 qt, dimensionless time.

v PH

wm Asymptotic approximation of y.

w Meridianal angular speed of rotation.

9} Squeeze frequency.

Subscripts

Ambient
Edge
Radial

(']

Tangential
Axial

Refers to Py -

N = N =~ 3

Refers to Py -

Superscripts

~ With structural vibrations.



10
11
12

LIST OF FIGURES

Spherical Squeeze-Film Bearing.

Unit Axial Load and 8tiffness vs. Axjal Excursion Ratio for
a Concentric, Hemispherical, Axial-Squeeze Film Bearing.

Unit Axial Load and Stiffness vs. Axial Eccentricity Ratio for
Various Excursion Ratios.

Unit Axial Load vs. Excursion Ratio (effective)

Unit Axial Stiffness vs. Excursion Ratio (effective).

Unit Axial Load Capacity vs. Excursion Ratio for Various
Axial Displacement Ratio.

Unit Axial Stiffness vs. Excursion Ratio for Various Axial
Displacement Ratio.

Unit Radial Stiffness vs. Excursion Ratio for Various Axial
Displacement Ratio.

Unit Radial Stiffnes vs. A for Various Axial Displacement Ratio.

Unit Tangential Stiffness vs. A for various Axial Displacement Ratio.

Unit Radial Stiffness vs. Excursion Ratio for Various A.

Unit Tangential Stiffness vs. Excursion Ratio for Various A.

-30-



Fig. 1 Spherical Squeeze-Film Bearing
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